

Universidad Nacional Autónoma de México

Dirección General de Cómputo y de Tecnologías de Información y Comunicación

Programa de Apoyo a Proyectos para la Innovación y Mejoramiento De la Enseñanza

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE110517

Manual para el docente del uso de las lecciones interactivas en Mathematica

Presentación

Estimado docente de bachillerato...

El siguiente manual tiene como propósito orientarle en el uso de las lecciones interactivas, diseñadas para enriquecer la enseñanza y aprendizaje dentro del curso de Física III de la Escuela Nacional Preparatoria de la UNAM.

El material presentado se encuentra dividido en unidades que coinciden con el programa oficial de la materia "Física III" de la ENP – UNAM, aprobado por el Colegio de Física. A su vez, cada unidad se divide en lecciones interactivas, el número de éstas dependerá del contenido a abordar dentro del programa.

En cada lección interactiva se sugieren estrategias didácticas, mismas que puede adaptar de acuerdo a las necesidades de sus alumnos y clases.

Recuerde que...

Puede acceder al programa vigente de Física III en la siguiente dirección electrónica. Para ello oprima la tecla Ctrl + clic.

http://dgenp.unam.mx/planesdeestudio/cuarto/14 01.pdf

Distribución del contenido

A continuación, se muestra una tabla con las unidades oficiales en las que se imparte la materia Física III. En este caso se incluyen las lecciones interactivas de las cuales puede disponer para impartir los temas.

Unidad temática que	Nombre de la	Formato	
cubre	lección interactiva		
Unidad 1.			
Introducción al	Introducción	Notebook	nb.
curso y la			
relación de la			
Física con el			
entorno social.			
Unidad 2.	Caída libre	Notebook	nb.
	Movimiento	Notebook	nb.
Interacciones	rectilíneo acelerado		
mecánicas.	Trabajo y energía	Notebook	nb.
Fuerza y	Leyes de Newton	Notebook	nb.
movimiento.			

Unidad 3.		Notebook	nb.
Omdad 3.	Ley Gay Lussac	Notebook	110.
Interacciones térmicas, procesos	Sistemas de trabajo adiabático	Notebook	nb.
termodinámicos	Principio de Pascal	Notebook	nb.
y máquinas térmicas	Principio de Arquímedes	Notebook	nb.
	Principio de Bernoulli	Notebook	nb.
	Ley de Boyle	Notebook	nb.
	Presión atmosférica	Notebook	nb.
Unidad 4.	Coulomb (Carga eléctrica)	Notebook	nb.
Interacciones eléctricas y	Electricidad (Faraday)	Notebook	nb.
magnéticas. Fenómenos	Electromagnetismo	Notebook	nb.
Luminosos	Circuitos eléctricos	Notebook	nb.
Unidad 5. Estructura de la materia	Modelo de Thomson	Notebook	nb.
	Modelo de Rutherford	Notebook	nb.
	Experimento de Millikan	Notebook	nb.
	El efecto fotoeléctrico	Notebook	nb.

Uso didáctico de las lecciones interactivas

Unidad 5

Estructura de la materia.

Tome en cuenta que... Lecciones interactivas 4 por unidad • Semipresencial Compatibilidad con • Presencial las modalidades • A distancia o en línea Tiempo definido de 36 horas abordaje de la unidad Equipo de cómputo Recursos necesarios Acceso a internet Red Universitaria de Aprendizaje - RUA

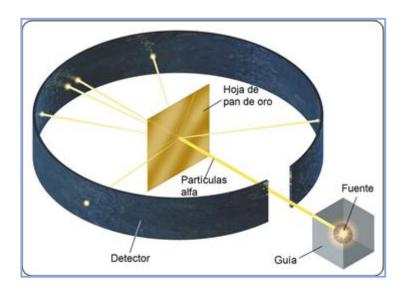
Lección: Modelo de Rutherford

Objetivo de la lección interactiva

-Comprender e identificar el modelo atómico de Ernest Rutherford.

Estrategia didáctica sugerida

I. Inicie el abordaje de la lección presentando el objetivo de la misma o puede pedir a un estudiante que lo lea en voz alta.

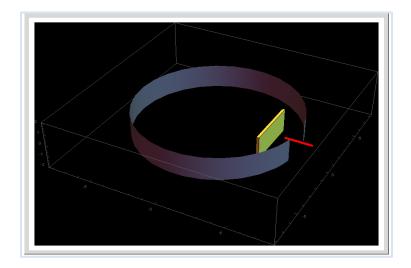

II. Comience con la técnica expositiva del tema a tratar.

III. Puede apoyarse de la información que se encuentra en la lección interactiva.

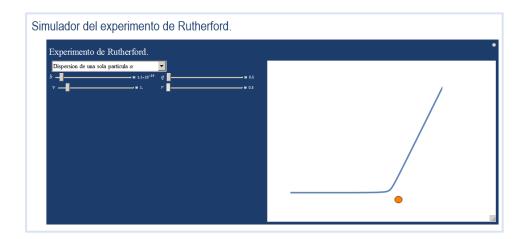
El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y fisico británico-neozelandês Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.

Rutherford llegó a la conclusión de que la masa del átomo se concentraba en una región pequeña de cargas positivas que impedian el paso de las particulas alfa. Sugirió un nuevo modelo en el cual el átomo poseia un núcleo o centro en el cual se concentra la masa y la carga positiva, y que en la zona extranuclear se encuentran los electrones de carga negativa.

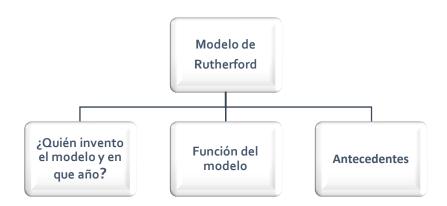
Importancia del modelo y limitaciones.


La importancia del modelo de Rutherford residió en proponer por primera vez la existencia de un núcleo central en el átomo (término que acuñó el propio Rutherford en 1912, un año después de que los resultados de Geiger y Mardsen fueran anunciados oficialmente). Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue «una concentración de carga» en el centro del átomo, ya que sin ella, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya que implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9 % de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abrían varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlos:


Ejemplo de la experimentación de Rutherford

En el ejemplo que a continuación se muestra, es posible ver los resultados que se obtienen a partir del experimento de Rutherford.


IV. Teniendo como antecedente la explicación del modelo de Rutherford, se solicitará la práctica utilizando el simulador que ofrece la lección.

Simulador 1.

V. Como actividad de cierre, solicite a los estudiantes la realización de un mapa conceptual sobre el modelo de Rutherford.

* Recuerde que un esquema, una lluvia de ideas, u otros recursos pueden reforzar el tema en cuestión.

Técnicas de enseñanza	Técnicas de aprendizaje
Lluvia de ideas	Trabajo individual
Expositiva	Uso de simulador

Bibliografía

- [1] Aguirre. Física III: actividades experimentales de electromagnetismo. México, Trillas,2008.
- [2] Alvarenga, B. y Máximo A. Física general con experimentos sencillos. 4a ed. México, Oxford, 2014.
- [3] Bravo, M.S. Física y creatividad experimentales: paquete didáctico Siladín para física I y II. México, UNAM-CCH, 2006.
- [4] Bueche, F.; E. Hetch. Física general. 10a ed. México, McGraw Hill, 2007. (Serie Schaum).
- [5] Colavita, E.; Echeverría Arjonilla, E. Física. México, McMillan Castillo, 2012. (Red Joven).

